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EVOLUTION OF AXISYMMETRIC VORTICITY DISTRIBUTIQNS IN AN IDEAL
INCOMPRESSIBLE STRATIFIED LIQUID

V.A. GORODTSOV

The Cauchy problem is sclved for axisymmetric vortex perturbations of an
exponentially stratified incompressible ideal liguid. The behaviour of
vorticity inside the region of its initial location, near the boundary of
that region, and away from it in the “wave" zone is studied. A number of
examples and analyzed with a specific initial distribution of vorticity,
among which are examples of anomalous solution behaviour. It is shown
that the initial jump of vorticity in a stratified liquid does not vanish,
but oscillates at a frequency which depends on the direction. When passing
te the limit of strongly singular initial distributions of the vortex
filament and cylindrical vortex layer types, the sclution increases with
time.

In liquids of inhomogeneous density (stratified liquids) in a gravity field the Archimedes
forces in the absence of a free surface sustain the propagation of interval waves. Such waves
have & vortex character and are capable of "carrying away" the vorticity from its original
location region. Because of this, the vorticity distributions which were stationary in a
homogeneous liguid may become unsteady in a stratified liguid, even when viscosity is neglected.

Below, we consider, in the linear approximation of an ideal incompressible inhomogenesous
liguid, the evolution of initially axisymmetric vorticity distributions (with a horizontal
axis of symmetry). The exact solutions obtained are in many respects close to the solution
of the problem of the "collapse” of a cylindrical region with initial density perturbations,
obtained earlier /1/. This similarity is associated with the fact that the vortex motion
results in violation of the initial egquilibrium density distribution in some region which sub-
sequently leads to its "collapse™. The solution of the general problem of the collapse of a
mixed liquid, allowing for the initial density perturbations and vorticity in the linear
description can be represented by the sum of sclutions of problems with initial perturbaticns
of only one of these characteristics, i.e. of the solutions considered below and solutions
similar to that obtained in /1/.

I. as the basic perturbed state let us consider a stationary liquid with an exponential
density distribution along the vertical exp (N%/g). The equations of small two-dimensional
perturbations (we restrict the consideration to two-dimensional motions in the vertical plane)
in the linear approximation of an ideal incompressible ligquid can be then written in the form
fe.g., /2/) s

B ap w dap N2
T w=—a e e+ Sw=0,
du ow

wta=0

where p,p, s, w are perturbations of the pressure, density and velogity components, zI,z,{ are
space coordinates {z>>0 downwards) and time, and ¢ and N are the free-fall acceleration and
the buoyancy frequency. The Boussinesg approximation is used here according to which the
variation of the density in imertial terms is not taken into account.

The evolution of the initial verticity distribution o = du/dz - ow/dz is defined by the
equation

_ @ oot lid &
La(r,ty=0, Ls?(F+W)+N:-&’- {1.1)
which follows from the above system, and by the initial conditions

Ofmo =0 (r, 0), fa%lwmo (1.2)

The second of these conditions indicates the absence of initial density perturbations
(the original system of equations implies that 6&w/ot = —g 8p/dx).
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Using a Fourier transformation, the solutions of such an initial value problem can be
represented in the form

m(r,t)s-zé}rSd’km(k,O)cos(Nt—};‘i-) exp (ike) (1.3)

where, as is clear from the special case ¢ =0, @ (k,0) is the Fourier transform of the initial
vorticity distribution wf(r, 0).

Restricting the analysis of axisymmetric initial vorticity distributions it is possible
to reduce the number of integrations in (1.3), since @ (k,0) then actually depends only on
the magnitude of the wave vector k =|k| After integration with respect to the directions
of the vector k, we obtain the following integral representation of the solution in terms of
the Bessel function /3/:

m(r,t)z-z}l-gdkkm(k,())ij.,(ﬂi) (1.4)

0
Ry? = (kr & Nt|cos g |)* + N%%Psin®@, x =rcosg, 2 =rsing

(certain singularities of similar representations were considered in /4/).

By expanding this expression in a Fourier series in the angular variable ¢, which can be
done using the theorem of the summation of cylindrical functions /3/, then in view of the
angular gymmetry (9 —+& — @, @=>— @) , only harmonies of even number and angle are present
in the expansion

o, t)== 2 Bnllay (1) Ja, (VE) 08 200 (1.5)
Thes

o

asn (r) = - | dhko (, 0) Ja (k7)

[

Such a Fourier geries is at the same time a Neumann expansion in cylindrical functions.
When r=0 or when averaging over directions, the whole series reduces to the first term

@@, Dlme = 00,0 7, ¥t), Calr,t)) = o, 0)J, (N) (1.8)

so that for the vorticity averaged over the vorticity angles {a{(r,?)) and for the vorticity
on the axis o (0,2), a characteristic feature is oscillating damping (if of course, o (0,0) =
0, cf. Sect.2, example 2). For long times (Nt>> 1) in conformity with the asymptotic
behaviour of the Bessel function, the oscillations of the buoyancy fequency N are damped as
~(Nt)y™h.

A simple, but unexpected result follows for the total magnitude of the vorticity over the
radial half-line (assuming it to be finite)

S dra (r, t) == cos (Nt sin ) S dro(r, 0)
[} [}

(when integrating (1.5) it is necessary to use the well-known formulas /3/).

Thus in the linear approximation of an ideal liquid the total vorticity on the radial
half-line does not decrease with time but oscillates at a frequency dependent on the direction.
In the horizontal direction it generally does not vary.

The vorticity, which initially was concentrated in a region with characteristic scale r,
is carried away by internal waves for a considerable time far beyond the boundaries of the
region. The integral (1.4) then yields a simple asymptotic estimate. If Nt|sing|>1, the
Bessel function under the integral can be replaced by a trigoncmetric asymptotic form. On
the assumption that r3»r, the function a(k, 0) is found to vary much more slowly than the
trigonometric one, and the stationary points (using the method of stationary phase, or that
of steepest descent) can be determined using the argument of the latter. When

B

from two such stationary points only the point k, = Nt cos ¢ | /r falls in the integration in-
terval, and the estimate of its contribution in its nearest neighbourhood yields

&k w{k_,0) N
m(r,t)zcos(msin@)——-—-——“;aj , kc=—;‘—lwwl (1.7

The general solution analyzed above canalsobe expressed in texms of the integral of the
initial three-dimensional vorticity distribution, using the inverse Fourier transform from
o (k, 0) to o (¢, 0). In the case of an axisymmetric distribution, the two-dimensional Fourier
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rransform reduces to the Hankel transform, using which, and also the theorem of the summation
of cylindrical functions /3/ and formulas for the integrals of products of Bessel functions
/3/, it is possible to derive from (1.4)

co(t,i)zm((},O)Jo(Nt)+Sdr’ﬂ)-%,—’g)—lf(m,—::—,@ (1.8)
o
" oo)= - o’ - (1.9)
K (Nt 9)=Jo(N)— £ S aiT (k) Zlo (Rs)

JoN0) + ¥ (Pa® — Pas @) Jan (V1) c05 209, ' <
, =l
where, since the function K (Nt,-fr—, q)) vanishes when r">r, in the integral in (1.8) we insert

L)
a finite upper limit, and P,(§) is the Legendre polynomial in §=1—-2-:r-,- which can be reptac-

ed by the Jacobi polynomial P8 &) == (Po(}) — Pou N —). .
Let us give one more integral representation of the function X (Nt,—;—,tp), which can be

obtained from (1.9), using the well-known formulas /3/ and a certain substitution of the angle

variable of integration e

K(m,.fr_'., (p) = % S dacos (asina) cos (b(cos*a + -f;—:-sin’ a)‘[')
[
r'?

a=Ntsin(p<i __;5_)‘/:’ b==Ntecosq, r' <(r

which for the vertical direction (@ = m/2) is in fact the integral representation of the Bessel func-
tion

K(m, z, (p} =J (m(1 - i})’) f2]>7 {1.10)

Note that the possibility of such a simple result for the integral of the products of Bessel

functions from (1.9}, when q:=-g— and r>r" had previously given rise to doubts /5/, and is not
given in /3/. Only in /6/ was a method of calculating a fairly large class of such integrals proposed.

For the horizontal direction (g = 0) the integral is reduced to the derivative of an in-
tegral proportiocnal to the three-dimensional Green's function of the internal-waves operator I
whose behaviour is investigated in detail in /7,8/(*).

N
r 2 9 Y
K(Ni,7',0)=—;t--w S dm{(N’-—m’)(m*—-N’—;;)] sin wf (1.11)
r
2. Let us consider some examples, £irstly, of the "vortex filament", when the vorticity
initially uniformly fills a cylinder of radius ry.

Example 1. For the distribution of the vortex filament type (h{(ry —r) is the Heaviside
unit function)
o, 0) = ad (ro — 1), 0k, 0) = 2ar 04/, (kro)fk

and from the general formulas (1.4) or (1.8), (1.9) the vorticity evolution is defined by the

integral -

m(r,z)=:‘?l‘2’£-sdkfz(kro)§fo(ﬂx) (2.1)
0

which inside the region initially filled by vortices reduces to the Bessel function
@ (r, 1) = @y (N1), r<r, (2.2)

i.e. the vorticity there oscillates and is damped uniformly for all r<r, (campare with (1.6)).
In the region outside the boundaries of the original filament r>r, the result may be repres-
ented in the form of a Neumann series (see (1.8) and (1.9))

o

2= ;{pm (1 —Z8) — Puo(t — £ )} Jan (V1) cos 2ng,

r>»ro

*)See /7,8/ and Gorodtsov V.A. and Teodorovich E.B., Linear internal waves in an exponentially
stratified ideal incompressible liquid. Pre-print No.ll4, Inst. Problems Mekhan., Acad. Nauk
88SR, 1978; and Gorodtsov V.A. and Teodorovich E.V,, The Cherenkov radiation of internal waves
by a uniformly moving source. Preprint No.183, Inst. Problem Mekhan., AN SSSR, 1981.
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Summing this series for r =r, and using the relaticn P, (—1) = (—1)" and the formulas
for the expansion of a trigonometric function in Bessel functions /3/, for the jump at r=r,
we obtain

[o(r,t)] = —@,cos (Nt cosg), 7 =r, 2.4

that indicates that the original vorticity jump at the boundary of the vortex filament does
not vanish in time but oscillates at frequency dependent on the direction.
Retaining in (2.3) terms linear with respect to the small ratio (r — r,)/ry, we obtain

oot — L5 T?;r + ) o (Ne) —cos (Necosq)), 7>

which makes clear that the j'ump zone decreases rapidly. The smallness of the correction is
here related to the smallness of the parameter N2 (r — ry)/r,.
For the vertical direction, by virtue of (1.8) and (1.10), we have the formula

°’|¢=1=“’o-’o(Nt)—wofo(NtV1-—ro’/Z’)h(IZI—ro) (2.5)

which confirms the previocus results.

A fairly simple analysis is possible for the horizontal dlrectlon owing to the direct
relation of the answer to Green's function (see (1.11)).

Finally, in the far "wave" zone at Nt |sing [ 1, rir,> 1 from (1.7) we have the asympt-
otic form

o(r, t)zmo-r;ﬂ-ll (Nt-fri’-lcosqﬂ)cos(Nt sin @)

Note that a similar analysis using the theorem of summation and recurrent formulas for
cylindrical functions, is possible for the more general integrals of J, (kro)k™J, (R4)R+™. The
case when n=m = {, [ =2 was considered in /l/.

The singularity of the above solution lies in the fact that it conserves the vorticity
shock amplitude (see also /1/).This isevidently related to the disregard of viscosity, and
the non-linearity in the formulation of the input problem. Consideration of the viscosity
leads to a diffusion blurring of the jump in a zone of thickness ~(t)* after a time t. How-
ever, the thickness of the jump zone in an ideally stratified liquid is characterized by the
ratio r/(N®*, as is clear from the preceding. Hence for fairly short times (Nt<€ (Nr/v)'%)
the effect of viscosity on the development of the jump can be neglected. The non-linearity
must play a more significant part resulting in instability of similar vorticity jumps, and by
the same token to a change in the nature of the "collapse". Moreover, when passing to the
limit of the vortex filament in the solution obtained (r, — 0, w, — o0, 0,y = const) the limit solu-
tion is found to increase with time, i.e. the basic state is unstable with respect to such
singular vortex perturbations even in the linear approximation.

Example 2. If at the initial instant the vorticity is distributed uniformly between
coaxial horizontal cylindrical surfaces

o 0)=qafh(ry—r)—=h(p—r}, n>n

then, owing to the linear formulation, the solution of the problem may be found in the form
of the difference of the solutions of the previous example of two vortex filaments. Then,
passing to the limit of an infinitely thin cylindrical vortex layer (ry —r,—r, Iy = nw, (n? —
r,?) == const)

o(r,0)= 6 (r—ro)

We express the solution of this problem in terms of the solution of the first example

e 00 Cak -
m(r,t)=-4-§-;-ro—?r-;{ro Sdlt-/x(kfo)ijo (Ri)}"
0

-—rLcos (Ntcose) B (r—ro) +

2ar,

h(r —ro) = "0 o—ru{ -4 2 Jan (N1) Pﬁ.‘.f)( 2"' ) cos 2ncp}

It can be seen that inside the region bounded by the vortex layer the vorticity is initia-
lly zero, and subsequently the vortex layer oscillates at constant amplitude, while in the
external zone the vorticity increases (undergoing oscillations) with time. The latter can be
readily checked in the special case of the vertical direction, when it is possible to use

formula (2.5).
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In conclusion we present two more examples with smooth non-singular vorticity distributions.

Example 3. For the initial distribution

. re re _ 21'1.]/.1!_ _ ket )
efr, 0}—moexp(—2—;—"z)fo(ﬂ), m(k,O)-wo—-k—-exP( -
which in view of the properties of the modified Bessel function is close to o, about the axis
of symmetry (r<<r,) and falls as woro/(r¥ @), while away from it (r3>r) the evolution of the
vorticity is defined by the integral

m(r,t)= E‘n;,'%‘ng:dkexl)(“ffg)z]“(}?i) (2.6)
o +

which can be represented in the form of a Neumann series (1.5) with coefficients

r rz
“xn(’)=“)eexp(“—’§)ln<2—r—oz)’ a=0,14,2,... (2.7)
Another convenient integral representation of the solution can be obtained, if in the
formula of type (1.3) the integration is carried out not with respect to the angle but the

wave number
/e

o, t) = Eﬂ‘; S d8 cos (Nt sin 0) Z exp'{—-’-;-;..sin’ (Gj:tp)}
] =+

In the case of a vertical direction by termwise integration of the exponent expansion in
a power series, we obtain another Neumann series

_ 9 \VLinle 2 \n 2.8
m,q,gi }/:T nl ( Ntn,’) 7a (M) ( )
2 =0

Example 4. For the initial exponential distribution

3
@ (r,0) = wo exp (— #) y 0k, 0) = nwgre* exp (— li;.‘f)

the integral formula (1.4) takes the form (cf (2.6))
N mo,sm Jedrg?
o) = -,,;-S akkexp (~ 522 ) V' 5 (ay) (2.9)
° E3

The coefficients of expansion in series of the type (1.5) are expressed in terms of
modified Bessel functions of half-integral order (compare with (2.7))

oan 1) = @02 €50 (= 25) (o ()= T ()}

For the vertical direction the integral (2.9) is reduced, by changing the variable of
integration § = (k¥2*+4 N?%)"*, to the incomplete Weber integral @, (s*rs® N2 /6/.

mfvn%=moexp(.’%.‘z¥—%){i—ou(%,Nt)} (2.10)

Qe ==L § Lo @ exp (~ ), Qole,e0) =1
o

In conformity with the expansion of that integral in Neumann series /6/ for the vorticity
distribution along the vertical we have

%L—-}= i(”’?{fz%)n Tn (V) = exp (ro?z,:ﬂ”'rz‘:?> "i(%)nﬂ’m (Vo) (2.11)
N

from which we can obtain the following asymptotic form:

2 2
™ {(p-izmoexp (ﬁgf— %r)—mnﬂ‘:%? I3 (Nty, Nt 22%r?
)

@ = { oy cos NtV aiNi, Ni=22%rg> 1
l@= + @ol o (V1) v Nt 088
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Here, as in previous examples, a decisive part is played by the mixed space-~time para-
ra®
meter Nt'f;s
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STABILITY AND ADMISSIBILITY OF DISCONTINUITIES IN THE SYSTEMS OF
EQUATIONS OF TWO-PHASE FILTRATION”

P.G. BEDRIKOVETSKII and M.V. LUR'E

To obtain the additional conditions at a discontinuity in the solution of
the non-convex hyperbolic systems of equations of two-phase filtration with
an active admixture /1-3/ (**) an approach is proposed that differs from
the method of vanishing viscosity. The discontinuous solution is consid-
ered as the limit of solutions of the non-equilibrium system, when the
characteristic time for thermodynamic equilibrium to become established
approaches zero. The admissibility conditions obtained (of the existence
of a structure) are the same as the equilibrium conditions in Oleinik's
form /5,6/, and ensure the existence and uniqueness of the selfsimiliar
solution of the problem of discontinuity disintegration.

The processes of petroleum displacement by hydrodynamically active fluids is defined by
systems of non-linear differential equation of hyperbelic type, as in gas dynamics, for which
discontinuous solutions are characteristic /7/. The stability of the discontinuity  with
respect to small perturbations is a generally acceptable requirement in the linearized problem
/8,9/. However, for some non-convex sytems of the equations of gas dynamics and elasticity
theory, the solution of the problem of discontinuity disintegration, containing stable discon-
tinuities is not unique /6,10/. Supplementary conditions at the discontinuity ensuring the
uniqueness of the solution were obtained either by generalizing the concept of stability, or
as the limit of the solutions of the corresponding problem in a more comprehensive physical
theory of “"vanishing viscosity" /8-11/.
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